AI-Dy-Mg (Aluminum-Dysprosium-Magnesium)

V. Raghavan

Recently, this ternary system was investigated experimentally by [2003Den] and assessed thermodynamically by [2003Cac]. To minimize the number of experiments required, an iterative procedure was adopted, where additional critical experiments were designed on the basis of preliminary calculations. An Al-rich ternary compound τ with the MgNi₂-type hexagonal structure was found at 400 °C.

Binary Systems

The Al-Dy phase diagram [2003Den, 2003Cac] shows the following intermediate phases: α DyAl₃ ($D0_{24}$, Ni₃Titype hexagonal), β DyAl₃ (HoAl₃-type rhombohedral), DyAl₂ (C15, MgCu₂-type cubic), DyAl (ErAl-type orthorhombic), Dy₃Al₂ (Zr₃Al₂-type tetragonal) and Dy₂Al (C23, Co₂Si-type orthorhombic). The Al-Mg phase diagram [1998Lia] has the following intermediate phases: Mg₂Al₃ (cubic, labeled β), R or ϵ (rhombohedral) and Mg₁₇Al₁₂ (Al2, α Mn-type cubic, denoted γ). The Dy-Mg phase diagram [Massalski2, 2003Cac] has the following intermediate phases: Dy_5Mg_{24} (A12, α Mn-type cubic), $DyMg_3$ ($D0_3$, BiF₃-type cubic), $DyMg_2$ (C14, $MgZn_2$ -type hexagonal), and DyMg (B2, CsCl-type cubic).

Ternary Isothermal Section

With starting metals of 99.999% Al, 99.9% Dy, and 99.99% Mg, [2003Den] induction-melted eight ternary alloys. Differential thermal analysis (DTA) was carried out at a heating/cooling rate of 10 °C/min. The samples were annealed at 400 °C for 850 h and quenched in water. The phase equilibria were studied with optical and electron microscopy, x-ray powder diffraction and electron probe microanalysis. These experimental results were used in the thermodynamic optimization by [2003Cac]. The computed isothermal section shown in Fig. 1 agrees well with the experimental results. An Al-rich ternary phase τ is present at 400 °C. It has a composition near Al₂Dy_{0.36}Mg_{0.64} and has the C36, MgNi₂-type hexagonal structure, with a = 0.5490 nm and c = 1.7697 nm. The DTA data show that τ forms peritectically at about 530 °C. At 400 °C, the

Fig. 1 Al-Dy-Mg computed isothermal section at 400 °C [2003Den, 2003Cac]. Narrow two-phase regions are omitted

Fig. 2 Al-Dy-Mg computed isothermal section at 800 °C [2003Cac]

binary phases DyMg (denoted *B*2) and DyAl₂ (denoted *C*15) dissolve up to 35 at.% Al and 15 at.% Mg, respectively. An isothermal section computed at 800 °C by [2003Cac] is shown in Fig. 2. The τ phase is absent at this temperature. The solubility of Mg in DyAl₂ is larger here, as compared to that in Fig. 1.

A liquidus projection was also computed by [2003Cac]. The range of primary solidification of the phases in the computed projection agrees well with the metallographic observations of [2003Den]. The C15 phase shows a large area of primary crystallization. However, the agreement of the computed surface with DTA data was found to be not satisfactory.

References

- 1998Lia: P. Liang, H.L. Su, P. Donnadieu, M.G. Harmelin, A. Quivy, P. Ochin, G. Effenberg, H.J. Seifert, H.L. Lukas, and F. Aldinger, Experimental Investigation and Thermodynamic Calculation of the Central Part of the Mg-Al Phase Diagram, *Z. Metallkd.*, 1998, 89(8), p 536-540
- 2003Cac: G. Cacciamani, S. De Negri, A. Saccone, and R. Ferro, The Al-R-Mg (R = Gd, Dy, Ho) Systems. Part II: Thermodynamic Modeling of the Binary and Ternary Systems, *Intermetallics*, 2003, 11, p 1135-1151
- **2003Den:** S. De Negri, A. Saccone, G. Cacciamani, and R. Ferro, The Al-R-Mg (R = Gd, Dy, Ho) Systems. Part I: Experimental Investigation, *Intermetallics*, 2003, **11**, p 1125-1134